CHROM. 8774

Note

Rapid detection of some basic drugs by thin-layer chromatography

J. C. HUDSON and W. P. RICE

Crime Detection Laboratory, Royal Canadian Mounted Police, Regina, Saskatchewan (Canada) (Received October 3rd, 1975)

Rapid detection of basic drugs in illicit preparations may be limited by similarities in their spectral properties. Ultraviolet (UV) spectrophotometry is the most widely available screening method for illicit drugs but lacks specificity. A large number of basic drugs, notably phenethylamine derivatives show an UV absorption at approximately 257 nm with low absorptivities (low ε values). Thin-layer chromatography (TLC) of basic drugs allows a higher degree of specificity with increased detection sensitivity. Recently various workers have shown the advantages of derivative formation in TLC of phenethylamine derivatives¹⁻⁴. The use of NBD-Cl (4-chloro-7-nitrobenzo-2,1,3-oxadiazole) has permitted the analyst to screen samples with increased speed and specificity⁴. Structures of reaction products have been elucidated by mass spectrometry⁵.

This study was undertaken to provide additional TLC data in reported solvent systems^{3,4} for phenethylamines and other basic drugs that exhibit a characteristic absorption at 257 nm in the UV region.

EXPERIMENTAL

Apparatus

The chromatography tanks used in this study were glass with approximate dimensions $23 \times 12 \times 23$ cm. The tank tops were sealed with a starch-glycerin paste⁶; the tanks were lined with Whatman No. 3 chromatography paper. The developing tanks were allowed to equilibrate for 30 min after solvent introduction. Analtech prescored silica gel G (250 μ m) plates (Mandel Scientific, Montreal, Canada) were used; the plates were not activated prior to use. The relative humidity throughout data collection was 23-29%.

Reagents

The following developing solvents were used: (I) ethyl acetate-cyclohexane (2:3); (II) ethyl acetate-cyclohexane (3:2); and (III) diethyl ether-benzene (1:1).

Derivative formation was accomplished with 0.1 M sodium bicarbonate solution and 1% (w/v) NBD-Cl (Aldrich, Milwaukee, Wisc., U.S.A.) in methyl isobutyl ketone.

Drug standards were prepared as follows: Solutions of 10 mg/ml of the salt of each drug were prepared in absolute ethanol or distilled water (depending upon the solubility of each drug).

TABLE I

TLC DATA OF NBD-CI DERIVATIVES IN ETHYL ACETATE-CYCLOHEXANE (2:3)

Substance	<i>R</i> ₅ *	R _x **	<i>R</i> _x ***	R _z *	Visible colour***
Alphaprodine	45	0.96	4.10	1.50	_
Amphetamine	47	1.00	4.60	1.69	Y
Anileridine	6	0.13	0.55	0.20	Or
Atropine	7	0.15	0.64	0.23	_
Benzphetamine	16	0.34	1.45	0.53	
Chlorpheniramine	11	0.23	1.00	0.37	Y
Chlorphentermine 3,4-Dimethoxy-	43	0.91	3.91	1.43	Y
amphetamine	10,21 55	0.21,0.45	0.91,1.91 55	0.33,0.70**	Or,Y⁵⁵
Diphenhydramine	34	0.72	3.09	1.13	Y
Ephedrine	18	0.38	1.64	0.60	Y
Ethoheptazine N-Ethyl-3-piperidyl	31	0.66	2.82	1.03	Y
benzilate	12	0.26	1.09	0.40	_
Fenfluramine	30	0.64	2.72	1.00	Y
p-Hydroxyephedrine	4,9,3 **	0.30,0.19,0.06**	1.27,0.82,0.27 \$\$	0.47,0.30,0.09	Ŷ,Y,Y™
Hyoscyamine 3,4-Methylenedioxy-	7	0.15	0.64	0.23	
amphetamine	43	0.91	3.90	1.43	Y
Mescaline N-Methyl-phenethyl-	16	0.34	1.45	0.53	Y
amine N-Methyl-3-piperidyl	26	0.55	2.36	0.87	Y-Or
benzilate	11	0.23	1.00	0.37	_
Methylphenidate	37	0.79	3.36	1.23	
Methamphetamine 3-Methoxy-4,5-	30	0.66	2.82	1.03	Y-Or
methylenedioxy-					
amphetamine 5-Methoxyamphet-	34	0.72	3.09	1.13	Y
amine	42	0.89	3.82	1.40	Y
Phenethylamine	45	0.95	4.09	1.50	Y
Phenmetrazine	31	0.66	2.64	1.03	Y
Phenylephrine Phenylpropanol-	7,4**	0.15,0.09**	0.64,0.36	0.23,0.13 55	Y,Y ^{§§}
amine	33,38**	0.70,0.81 \$ \$	3.0,3.5	1.1,1.255	(F),Y **
Piminodine	11	0.23	1.60	0.37	Y-Or
Piperidine	29	0.62	2.64	0.96	Or-Rd
Procyclidine	16	0.34	1.45	0.53	Or
Propoxyphene	11	0.23	1.00	0.37	Ŷ
Pseudoephedrine 2,5-Dimethoxy-4-	14	0.30	1.27	0.47	Ŷ
methylamphet- amine	46	0.98	4.18	1.53	Or

* $R_F \times 100$ (average of 3 runs). * R_x relative to amphetamine (standard). * R_x relative to chlorpheniramine (standard).

 1 R_{z} relative to methamphetamine (standard).

53 Multiple reaction products.

^{\$55} All spots fluorescent (yellow; 254 nm).

TABLE II

TLC DATA OF NBD-CI DERIVATIVES IN ETHYL ACETATE-CYCLOHEXANE (3:2)

Substance	R_F^*	R _x **	R _z ***	R _x ⁵	Visibte colour 👯
Alphaprodine	60	0.88	2.35	1.16	
Amphetamine	63	1.00	2.84	1.33	Y
Anileridine	19	0.29	0.84	0.39	Or
Atropine	25	0.39	1.10	0.51	
Benzphetamine	36	0.54	1.47	0.71	
Chlorpheniramine	23	0.35	1.00	0.47	Y
Chlorphentermine 3,4-Dimethoxyam-	59	0.95	2.77	1.27	Y
phetamine	24	0.37	1.05	0.49	Or/Y
Diphenhydramine	53	0.83	2.33	1.09	Y
Ephedrine	33	0.53	1.50	0.71	Y
Ethoheptazine N-Ethyl-3-piperidyl	52	0.80	2.22	1.08	Y
benzilate	28	0.41	0.98	0.54	_
Fenfluramine	50	0.78	2.20	1.03	Y
p-Hydroxyephedrine	30,25,12\$\$	0.47,0.39,0.19	1.34,1.1,0.54	0.62,0.51,0.25 \$ \$	Y,Y,Y ^{ss}
Hyoscyamine	26	0.40	1.13	0.53	—
3,4-Methylenedioxy-					
amphetamine	58	0.91	2,59	1.20	Y
Mescaline	37	0.58	1.64	0.77	Y
N-Methyl-phenethyl-					
amine	42	0.66	1.71	0.88	Y-Or
N-Methyl-3-piperidyl					
benzilate	26	0.41	0.98	0.54	
Methylphenidate	55	0.85	2.40	1.12	
Methamphetamine	49	0.76	2.15	1.00	Y-Or
3-Methoxy-4,5-					
methylenedioxy-		0.02	3.33	1.00	Y
amphetamine	53	0.82	2.33	1.08	ĩ
p-Methoxyamphet-		0.00	0.50	1 17	
amine	57	0.89	2.53	1.17	Y
Phenethylamine	61	0.95	2.71	1.25	Y Y
Phenmetrazine	51	0.79	2,24	1.05 0.47,0.34 ^{5 5}	Y YY™
Phenylephrine	23,16**	0.35,0.25	1.05,0.75	0.47,0.34**	1 1
Phenylpropanol-	c .2	0.00	2.22	1.09	v
amine	53	0.82	2.33		-,Y
Piminodine	25	0.39	1.10	0.51	Y-Or
Piperidine	43	0.66	1.71	0.88	Or-Rd
Procyclidine	31	0.49	1.21	0.64	Or .
Propoxyphene	22	0.35	1.01	0.46	Y
Pseudoephedrine 2,5-Dimethoxy-4- methylampheta-	32	0.49	1.40	0.65	Y
mine	60	0.93	2.65	1.23	Or

* $R_F \times 100$ (average of 3 runs). * R_x relative to amphetamine (standard). ** R_x relative to chlorpheniramine (standard).

 $^{s}R_{r}$ relative to methamphetamine (standard).

⁶⁵ Multiple reaction products.

fss All spots fluorescent (yellow; 254 nm).

Procedure

Approximately 100 μ g of each drug were added to a 10 \times 75 mm test-tube, followed by 0.2 ml of the sodium bicarbonate solution. Each tube was shaken and 0.2 ml of the NBD-Cl solution were added. The tubes were stoppered and placed in an oven for 30 min at 80°. Aliquots of 5 μ l of the upper (methyl isobutyl ketone) layer were spotted and each TLC plate was eluted to a distance of 15 cm. Spots were observed under visible light and UV light (254 nm). Each R_F value was recorded.

The R_x values (relative to a standard mixture, 10 mg/ml of chlorpheniramine, methamphetamine, and amphetamine) were then calculated. The standard mixture allowed monitoring chromatographic conditions and the collection of R_x values.

RESULTS AND DISCUSSION

TLC data for some basic drugs with UV maxima at approximately 257 nm are tabulated in Tables I-III. Standard deviations in all R_F values are less than 0.05.

Compound	R_{F}^{*}	Visible colour ^e	_
Amphetamine	69	Y	
Anileridine	18	Or**	
Atropine	15		
Renzphetamine	27		
Chlorpheniramine	36	Or	
Diphenhydramine	63	Or	
Ephedrine	42	Or	
N-Ethyl-3-piperidyl benzilate	26	-	
Fenfluramine	57	Or-Rd	
p-Hydroxyephedrine	13,28,36***	Or,Or,Y***	
3,4-Methylenedioxyamphetamine	63	Or	
Mescaline	37	Y	
N-Methyl-phenethylamine	52	Or	
N-Methyl-3-piperidyl benzilate	27		÷
Methylphenidate	64		
Methamphetamine	59	Or	
3-Methoxy-4,5-methylenedioxyamphetamine	57	Or	
p-Methoxyamphetamine	63	Y	
Phenethylamine	66	Y	
Phenmetrazine	57	Οr	
Phenylephrine	17,23***	Or,Or***	
Phenylpropanolamine	49	Y	í
Piperidine	55	Or-Rd	
Procyclidine	62	Rd	
Propoxyphene	35	Y	
Pseudoephedrine	35	Ör	
2,5-Dimethoxy-4-methylamphetamine	61	Or	

TABLE III

TLC DATA OF NBD-CI DERIVATIVES IN DIETHYL ETHER-BENZENE (1:1)

* $R_F \times 100$ (average of 3 runs; 1 run per freshly prepared tank).

** Multiple reaction products.

⁵ All spots fluorescent (yellow; 254 nm).

^{**} Streak.

The developing solvents I and II were found to be the most suitable for NBD-Cl derivatives.

Table III gives data for the first run in each tank only. The second and third runs gave data with standard deviations greater than 0.10 and were not included.

Comparative R_F values for basic drugs in the three solvent systems permitted tentative identification (see Table IV). The inclusion of UV spectra provided a rapid method for identification of the basic drugs tabulated. For example, chlorpheniramine

TABLE IV

COMPARATIVE	R _F	VALUES	OF	NBD-Cl	DERIVATIVES
-------------	----------------	--------	----	--------	-------------

Compound	$R_F \times I00$	Visible			
	Ethyl acetate– cyclohexane (2:3)	Ethyl acetate– cyclohexane (3:2)	Diethyl ether- benzene (1:1)	- colour**	
Anileridine	6	19	18	Ог	
Atropine	7	25	15	_	
Hyoscyamine	7	26	_	—	
Phenylephrine	7,4*	23,16*	17,23*	Y-Or,Y*	
3,4-Dimethoxyamphetamine	10,20*	24	_	Y	
Chlorpheniramine	11	23	36	Y	
Propoxyphene	11	22	35	Y	
Piminodine	11	25	_	Y-Or	
N-Methyl-3-piperidyl					
benzilate	11	26	27		
N-Ethyl-3-piperidyl benzilate	12	26	26	_	
Pseudoephedrine	14	32	35	Y	
p-Hydroxyephedrine	14,9,3*	30,25,12*	13,28,36*	Y	
Benzphetamine	16	36	27		
Mescaline	16	37	37	Y	
Procyclidine	16	31	62	Or	
Ephedrine	18	33	42	Y	
N-Methylphenethylamine	26	42	52	Y-Or	
Piperidine	29	43	55	Or-Rd	
Fenfluramine	30	50	57	Or	
Ethoheptazine	31	52		Y-Or	
Methamphetamine	30	49	59	Y-Or	
Phenmetrazine	31	51	57	Ŷ	
Phenylpropanolamine	33,38*	53	49	-,Y*	
Diphenhydramine	34	53	63	Ŷ	
3-Methoxy-4.5-methylene-					
dioxyamphetamine	34	53	57	Y	
Methylphenidate	37	55	64	-	
p-Methoxyamphetamine	42	57	63	Y	
Chlorphentermine	43	59		Ŷ	
3,4-Methylenedioxyamphet-					
amine	43	58	63	Y	
Alphaprodine	45	60			
Phenethylamine	45	61	66	Y	
2,5-Dimethoxy-4-methyl-					
amphetamine	46	60	61	Or	
Amphetamine	47	64	69	Ŷ	

* Multiple reaction products.

** All spots fluorescent (yellow; 254 nm).

and proposyphene have identical R_F values by the NBD-Cl method; their UV spectra, however, are markedly different. Chlorpheniramine in acid shows an absorption at 265 nm, while proposyphene in acid has an absorption at 257 nm.

Slight differences in colours of reaction products and the presence or absence of a fluorescent reaction product permitted differentiation between most of the drugs tabulated. Multiple reaction products, where detected, are indicated by more than one R_F value. The nature of these products has not been investigated.

Bethanidine, eucatropine, homatropine, hyoscine, mephentermine, methadone, phendimetrazine and propylhexedrine did not react with NBD-Cl, and pethidive gave a weak reaction only. Some of these compounds also show an absorption at approximately 257 nm. This fact should be taken into consideration when interpreting analytical data.

Typical sensitivities for selected drugs after reaction with NBD-Cl and TLC elution, are listed in Table V. These sensitivities indicate the application of NBD-Cl on small samples, for example, syringe washings. At present the NBD-Cl procedure is being used satisfactorily in forensic drug analysis and drug screens on basic extracts of toxicological material.

TABLE V

SENSITIVITIES OF SELECTED COMPOUNDS WITH NBD-Cl Sensitivities were determined after TLC elution.

Compound	Sensitivity (µg)		
Amphetamine	0.01		
Anileridine	0.03		
Chlorpheniramine	0.01		
Chlorphentermine	0.50		
Diphenhydramine	0.01		
Methylphenidate	0.50		
Methamphetamine	0.01		
Phenethylamine	0.01		
Phenmetrazine	0.05		
3,4-Methylenedioxyamphetamine	0.35		
3-Methoxy-4,5-methylenedioxyamphetamine	0.35		
p-Hydroxyephedrine	0.50		

ACKNOWLEDGEMENTS

The authors wish to express their appreciation to the Royal Canadian Mounted Police for their assistance, to the Health Protection Branch, Health and Welfare, Canada, for supplying some of the standard drugs, and to Mrs. Susan Moe for her kind assistance in the preparation of the manuscript.

REFERENCES

- 1 J. Monforte, R. J. Bath and I. Sunshine, Clin. Chem., 18 (1972) 1329.
- 2 R. S. Fager, C. B. Kutina and E. W. Abrahamson, Anal. Biochem., 53 (1973) 290.
- 3 R. N. Gupta, B. G. Chittim and P. M. Keane, J. Chromatogr. Sci., 12 (1974) 67.
- 4 F. van Hoof and A. Heyndrickx, Anal. Chem., 46 (1974) 286.
- 5 J. Reisch, H. Alfes, H. J. Kommert, N. Jantos, H. Moliman and D. Clasing. *Pharmazie*, 25 (1970) 331.
- 6 M. A. Shaw and H. Peel, J. Chromatogr., 104 (1975) 201.